Bloom, Stephen L.; Troeger, Douglas R.
A logical characterization of observation equivalence. (English) Zbl 0558.68027

S. D. Brookes and W. C. Rounds [Lect. Notes Comput. Sci. 154, 97-108 (1983; Zbl 0536.68042)] showed that a finitary formal language (‘regular trace language’, or Reg-TL, for short) which allowed a certain kind of quantification using regular subsets of Σ^* was not strong enough to distinguish all pairs of observationally inequivalent synchronization trees. In the present paper this result is extended to show that there is no class C of subsets of Σ^* such that C-TL can distinguish all pairs of observationally inequivalent synchronization trees. Then a characterization of observation equivalence in terms of an infinitary formal language S-TL(ω) is given. This language is obtained as an extension of the language S-TL (‘singleton trace language’) of Hennessy and Milner by the addition of a connective of ω-conjunctions of formulas of finite bounded depth.

MSC:

68Q65 Abstract data types; algebraic specification
68Q45 Formal languages and automata

Keywords:
trace logic; trace language; synchronization trees; observation equivalence; infinitary formal language

Full Text: DOI

References:

[1] Brookes, S.D.; Rounds, W.C., Behavioral equivalence relations induced by programming logics, (), also in: · Zbl 0536.68042
[6] Milner, R., A modal characterization of observable machine behaviour, () · Zbl 0474.68074
[7] Milner, R., Four combinators for concurrency, (), 104-110

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.