Lorentz, G. G.
Distribution of alternation points in uniform polynomial approximation. (English)

Let P_n be the polynomial of best uniform approximation to $f \in C[0,1]$, let x_k be some $n + 2$ points of $[0,1]$ where $P_n(x_k) - f(x_k) = \epsilon(1)^k \|P_n - f\|$, with $\epsilon = +1$ or -1. The alternance points x_k can be very irregularly distributed. There exists an entire function f for which, for some arbitrary large n, all x_k are contained in an arbitrary small neighborhood of 0, or of 1, or are equally distributed in $[0,1]$ for the measure $d\mu = (x(1-x))^{-1/2}dx$.

MSC:
- 41A10 Approximation by polynomials
- 41A50 Best approximation, Chebyshev systems
- 42A10 Trigonometric approximation

Keywords:
best uniform approximation; alternance points

Full Text: DOI

References:

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.