Ma, Jiliang; Yu, Chunhai
On the direct product of fuzzy topological groups. (English) Zbl 0597.22003

For basic definitions, see the authors’ preceding paper [ibid. 12, 289-299 (1984; Zbl 0577.22003)].

For $1 \leq i \leq n$, let A_i be a fuzzy set in the fuzzy topological group (ftg.) (X_i, T_i). Then $\prod_{i=1}^n A_i$ is the fuzzy set in $X = \prod_{i=1}^n X_i$ that has membership function given by $\mu_{A_i}(x(1), \ldots, x(n)) = \min\{\mu_{A_1}(x(1)), \ldots, \mu_{A_n}(x(n))\}$.

$U_{x_{\lambda}}(i)$ a fuzzy open Q-nbd. system of x_{λ}^i relative to T_i, and $U_{x_{\lambda}} = \{U_{x_{\lambda}} \mid$ there exists $U_i \in U_{x_{\lambda}}^i, 1 \leq i \leq n,$ such that $\prod_{i=1}^n U_i \subseteq U_{x_{\lambda}}\}$. Then $T = \{U \in U_{x_{\lambda}} \text{ whenever } x_{\lambda}^i U\}$ is a fuzzy topology for $X; U_{x_{\lambda}}$ is a Q-neighbourhood system of $x_{\lambda};$ and (X, T) is a ftg.

Furthermore, let the ftg (X, T) be the dissolved direct product of normal subgroups $(N_i, T_i), 1 \leq i \leq k,$ of the algebraic group X; (X', T') be the direct product of the ftg’s $(N_i, T_i);$ and f, f_i be the maps given by $(x(1), \ldots, x(k)) \mapsto x(1)\ldots x(k)$ and $x(i) \mapsto (e, \ldots, e, x(i), e, \ldots, e), \text{ respectively.}$ Then f is an isomorphism of the ftg (X', T') onto $(X, T),$ and, if (X, T) is a fully stratified space, then $f f_i$ is the identity map on $(N_i, T_i).$

Reviewer: D.Grant

MSC:
22A99 Topological and differentiable algebraic systems
54A40 Fuzzy topology
03E72 Theory of fuzzy sets, etc.

Keywords:
fuzzy set; fuzzy topological group; fuzzy topology

Full Text: DOI

References:

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.