Blair, D. E.; Ledger, A. J.
Critical associated metrics on contact manifolds. II. (English) Zbl 0611.53031

[Part I, cf. the first author, ibid. 37, 82-88 (1984; Zbl 0552.53014).]

Let M be a compact contact manifold of dimension $2n + 1$ and \mathcal{A} the set of metrics g associated to the contact form η so that (ϕ, ξ, η, g) is a contact metric structure [the first author, Contact manifolds in Riemannian geometry, Lect. Notes Math. 509 (1976; Zbl 0319.53026)]. In the present paper the integrals $I(g) = \int_M R dV$ and $K(g) = \int_M (R - R^* - 4n^2) dV$ are studied as functions on \mathcal{A}. Here R is the scalar curvature and R^* is the $*$-scalar curvature constructed from the curvature and ϕ. The volume element is denoted by dV as it does not depend on g associated to η. The critical points of the functions $I(g)$ and $K(g)$ are found to be such that they satisfy certain commutativity conditions. In particular Sasakian metrics are maxima for $K(g)$ when they exist.

Reviewer: Y. Muto

MSC:

53C15 General geometric structures on manifolds (almost complex, almost product structures, etc.)
53C25 Special Riemannian manifolds (Einstein, Sasakian, etc.)
58E11 Critical metrics

Keywords:
contact manifold; contact metric structure; scalar curvature; critical points; Sasakian metrics