G. Labelle has proved that
\[|a_n| \leq \frac{1 \cdot 3 \cdot 5 \cdot \ldots \cdot (2n - 1)}{n!} \left(\frac{2n + 1}{2} \right)^{1/2} \left(\int_{-1}^{1} |p_n(x)|^2 \, dx \right)^{1/2} \]
where \(p_n(x) = \sum_{\nu=0}^{n} a_{\nu} x^\nu \) is a polynomial of degree \(n \). The author improves this result by proving the following corresponding result: If \(p_n(x) = \sum_{\nu=0}^{n} a_{\nu} x^\nu \) is a polynomial of degree \(n \) such that \(p_n(1) = 0 \), then
\[|a_n| \leq \frac{n}{n + 1} \frac{(2n)!}{2^n (n!)^2} \left(\frac{2n + 1}{2} \right)^{1/2} \left(\int_{-1}^{1} |p_n(x)|^2 \, dx \right)^{1/2}. \]
This inequality is sharp and the author gives the condition under which equality holds.

Reviewer: R.N. Siddiqi

MSC:
26C05 Real polynomials: analytic properties, etc.
41A10 Approximation by polynomials

Keywords:
polynomials on the unit interval; coefficient estimates; Chebyshev polynomials; Legendre polynomials

Full Text: DOI

References:

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.