McQuillan, Dan; Pan, Shengjun; Richter, R. Bruce
On the crossing number of K_{13}. (English) [Zbl 1319.05045]

Summary: Since the crossing number of K_{12} is now known to be 150, it is well-known that simple counting arguments and Kleitman’s parity theorem for the crossing number of K_{2n+1} combine with a specific drawing of K_{13} to show that the crossing number of K_{13} is one of the numbers in \{217, 219, 221, 223, 225\}. We show that the crossing number is not 217.

MSC:
05C10 Planar graphs; geometric and topological aspects of graph theory

Keywords:
crossing number; complete graph; equivalent drawings; normal deficiency property; K_{13}

Full Text: DOI

References:
[5] D. McQuillan, R.B. Richter, On the crossing number of $K_{\text{\textit{n}}}^3$ without computer assistance, J. Graph Theory, to appear. · Zbl 1342.05091
[6] Pan, S.; Richter, R. B., The crossing number of K_{11} is 100, J. Graph Theory, 56, 2, 128-134, (2007) · Zbl 1128.05018

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.