Björner, A.; Frankl, P.; Stanley, R.

A Cohen-Macaulay complex is said to be balanced of type \(a = (a_1, a_2, ..., a_s) \) if its vertices can be colored using \(s \) colors so that every maximal face gets exactly \(a_i \) vertices of the \(i \)th color. For \(b = (b_1, b_2, ..., b_s) \), \(0 \leq b \leq a \), let \(f_b \) denote the number of faces having \(b_i \) vertices of the \(i \)th color. Our main result gives a characterization of the \(f \)-vectors \(f = (f_b)_{0 \leq b \leq a'} \) or equivalently the \(h \)-vectors, which can arise in this way from balanced Cohen-Macaulay complexes. As part of the proof we establish a generalization of Macaulay’s compression theorem to colored multicomplexes. Finally, a combinatorial shifting technique for multicomplexes is used to give a new simple proof of the original Macaulay theorem and another closely related result.

MSC: 05A15 Exact enumeration problems, generating functions 55U05 Abstract complexes in algebraic topology

Keywords: Cohen-Macaulay complex; colored multicomplexes

Full Text: DOI

References:

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.