Günttner, R.

The author proves that the Lebesgue constants $\lambda_{n-1} = \lambda_{n-1}((x_k^{(n)})_{k=0}^{n-1}) (n = 1, 2, ...)$, associated with the Lagrange polynomial interpolation at the extended Chebyshev nodes $x_k^{(n)} = \cos(2k+1)t/\cos t$ ($t = \pi/2n$), have asymptotic expansions of the form

$$\lambda_{n-1} = \frac{2}{\pi} \log n + F_0 + \sum_{k=1}^i \left(\frac{F_k}{\log kn} + O(1/\log (i+1)n)\right)$$

for all nonnegative integers i. The constants F_k are computed only for $k = 0, 1, 2$.

Reviewer: R.Smarzewski

MSC:
41A05 Interpolation in approximation theory

Keywords:
Lebesgue constants; Lagrange polynomial interpolation; Chebyshev nodes

Full Text: DOI