Sane, Sharad S.; Shrikhande, Mohan S.
Quasi-symmetric 2,3,4-designs. (English) Zbl 0655.05012

Quasi-symmetric designs are block designs with two block intersection numbers x and y. In this paper, it is shown that with the exception of $(x, y) = (0, 1)$, for a fixed value of the block size k, there are finitely many such designs. Some finiteness results on block graphs are derived. For a quasi-symmetric 3-design with positive x and y, the intersection numbers are shown to be roots of a quadratic whose coefficients are polynomial functions of v, k and λ. Using this quadratic, various characterizations of the Witt-Lüneburg design on 23 points are obtained. It is also shown that if $x = 1$, then a fixed value of λ determines at most finitely many such designs. One of the interesting results is as follows: Let D be a quasi-symmetric 3-(v,k,λ) design with $x = 1$. Then (i) $v - 2$ divides $k(k - 1)(k - 2)$; (ii) the larger intersection number $y \geq 3$ with equality if and only if D is the unique Witt-Lüneburg 4-design or its residual a 3-design; (iii) $\lambda \geq y$; (iv) $\lambda_3 \geq 4$ with equality if and only if D is the 3-design $(22,7,4)$ design; (v) $\lambda_3 = 5$ if and only if D is the Witt-Lüneburg design on 23 points; (vi) $\lambda_3 \leq k - 2$ with equality if and only if D is the Witt-Lüneburg design on 23 points; (vii) $\lambda_2 \leq v - 2$ with equality if and only if D is the Witt-Lüneburg design on 23 points; (viii) v is bounded below and above as follows,

$$\frac{(k - 2)^2(y - 1)}{y(y - 2)} + \frac{k - 2}{y} - 1 \leq v - 3 \leq \frac{(k - 2)(k - 3)}{y - 2},$$

further, in which the upper bound is sharp with equality if and only if D is the Witt-Lüneburg 4-design on 23 points. Two conjectures on the classification of quasi-symmetric 3-designs are interestingly stated.

Reviewer: S. Kageyama

MSC:
05B05 Combinatorial aspects of block designs
05B25 Combinatorial aspects of finite geometries

Keywords:
t-designs; Quasi-symmetric designs; block designs; block graphs; Witt-Lüneburg design

Full Text: DOI

References:

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.