A worst-case efficient algorithm for hidden-line elimination. (English) Zbl 0655.68047

Summary: Many practical algorithms for hidden-line and surface elimination in a 2-dimensional projection of a 3-dimensional scene have been proposed. However surprisingly little theoretical analysis of the algorithms has been carried out. Indeed no non-trivial lower bounds for the problem are known. We present a plane-sweep-based hidden-line-elimination algorithm for 2-dimensional projections of scenes consisting of arbitrary polyhedra. It requires, in the worst case, $O(n \log n)$ space and $O((n + k) \log 2 n)$ time, where n is the number of edges in the 3-dimensional scene, and k is the number of edge intersections in the specific projection.

MSC:
68Q25 Analysis of algorithms and problem complexity
68U99 Computing methodologies and applications

Keywords:
computational geometry; worst case analysis; computer graphics; display algorithms; hidden-line-elimination

Full Text: DOI

References:

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.