Neta, B.; Navon, I. M.

A transfer function analysis is used to analyze the Turkel-Zwas explicit large time step scheme applied to the shallow-water equations [E. Turkel and G. Zwas in: Advances in computer methods for partial differential equations. Proc. third IMACS Internat. Sympos. Comput. Meth. Partial Diff. Equ., Lehigh Univ., Bethlehem, Pennsylv., USA (1979; Zbl 0477.65067); ed. by R. Vichnevetsky and R. S. Stepleman]. The transfer function concept leads to insight into the behavior of this discretization scheme in terms of comparison between continuous and discrete amplitude, phase, and group velocity coefficients. The dependence of the distortion increases with the increase in the time-step size taken for the Turkel-Zwas scheme, which depends on the ratio between a coarse and a fine mesh. A comparison with earlier results of A. L. Schoenstadt [Naval Post-Graduate School Report NPS-53-79-001, 1978 (unpublished)] shows the Turkel-Zwas scheme to give reasonable results up to time steps three times larger than the CFL limit.

MSC:
76B15 Water waves, gravity waves; dispersion and scattering, nonlinear interaction
65Z05 Applications to the sciences

Keywords:
transfer function analysis; Turkel-Zwas explicit large time step scheme; shallow-water equations; discretization scheme

Full Text: DOI
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.