Let \(\{ F_{n}^{(k)}(x) \}_{n=0}^{\infty} \) be the sequence of Fibonacci-type polynomials of order \(k \) of the authors and G. N. Philippou [ibid. 23, 100-105 (1985; Zbl 0563.10014)], and let \(\{ F_{n,r}^{(k)}(x) \}_{n=0}^{\infty} \) be the \((r-1)\)-fold convolution of \(\{ F_{n}^{(k)}(x) \}_{n=0}^{\infty} \) with itself. The authors derive multinomial and binomial expansions for \(F_{n+1,r}^{(k)}(x) \), \(n \geq 0 \), as well as the following recurrence:

Theorem 1. Set \(F_{n,r}^{(k)}(x) = 0 \) for \(-k+1 \leq n \leq -1 \). Then \(F_{0,r}^{(k)}(x) = 0 \), \(F_{1,r}^{(k)}(x) = 1 \), and

\[
F_{n+1,r}^{(k)}(x) = n^{-1}x \sum_{j=1}^{k} [n + j(r-1)]F_{n+1-j,r}^{(k)}(x), \quad n \geq 1.
\]

Using the above mentioned results, the authors derive binomial expressions for the negative binomial distribution of order \(k \) of the authors and G. N. Philippou [Stat. Probab. Lett. 1, 171-175 (1983; Zbl 0517.60010)], say \(\text{NB}_{k,I}(r, p) \), and the negative binomial (or compound Poisson) distribution of order \(k \) of the first author [Zap. Nauchn. Semin. Leningr. Otd. Mat. Inst. Steklova 130, 175-180 (1983; Zbl 0529.60010)], say \(\text{NB}_{k,II}(r, p) = \text{CP}_{k}(r, \alpha) \) with \(\alpha = kp/q \). They also derive the following useful recurrences for calculating probabilities in these two distributions.

Theorem 2. Let \(X \) be a random variable distributed as \(\text{NB}_{k,I}(r, p) \), and set \(P_{n} = P(X = n) \). Then

\[
P_{n} = 0 \quad \text{for} \quad n \leq kr - 1, \quad P_{n} = p^{kr} \quad \text{for} \quad n = kr, \quad \text{and}
\]

\[
P_{n} = qp^{-1}(n - kr)^{-1} \sum_{j=1}^{k} [n - kr + j(r-1)]p^{j}P_{n-j} \quad \text{for} \quad n \geq kr + 1.
\]

Theorem 3. Let \(X \) be a random variable distributed as \(\text{NB}_{k,II}(r, p) \), and set \(P_{n} = P(X = n) \). Then

\[
P_{n} = 0 \quad \text{for} \quad -k+1 \leq n \leq -1, \quad P_{n} = p^{r} \quad \text{for} \quad n = 0, \quad \text{and}
\]

\[
P_{n} = qp^{-1}n^{-1} \sum_{j=1}^{k} [n + j(r-1)]P_{n-j} \quad \text{for} \quad n \geq 1.
\]

The computational usefulness of the binomial expressions is illustrated by two examples. (Reviewer’s remark: In Definition 3.2, \(q/p \) should be replaced by \(q/k \)).

Reviewer: A.N.Philippou

MSC:

- 60E05 Probability distributions: general theory
- 11B37 Recurrences
- 11B39 Fibonacci and Lucas numbers and polynomials and generalizations

Keywords:

- Fibonacci-type polynomials; negative binomial distribution