The paper under review studies some profinite invariants of 3-manifolds, in particular of graph manifolds. Recall that a profinite group is an inverse limit of a system of finite groups, while the profinite completion of a group G is the profinite group \hat{G} defined as the inverse limit of all finite quotient groups of G. On the other hand, a graph manifold is an irreducible 3-manifold whose JSJ decomposition consists only of Seifert-fibred pieces.

Now, let G and H be two groups with isomorphic profinite completions. A property \mathcal{P} is called a profinite invariant whenever the group G has \mathcal{P} if and only if H has \mathcal{P}.

In this work the author considers only profinite invariants of fundamental groups of compact orientable graph manifolds, and hence one can call them profinite invariants of 3-manifolds. Examples of such invariants are e.g. the geometry of a 3-manifold and the triviality of the JSJ decomposition, as shown in [H. Wilton and P. Zalesskii, Geom. Topol. 21, No. 1, 345–384 (2017; Zbl 1361.57023)].

Obviously, the strongest profinite invariant of a group G is the isomorphism type of the group itself, namely whenever one has that $G \simeq H$ implies $\hat{G} \simeq \hat{H}$. In such a case one says that the group is profinitely rigid. The study of profinitely rigid 3-manifold groups is very much recent and there are only few examples of such manifolds, like for instance most closed Seifert fibred spaces, the figure-eight knot complement, and once-punctured torus bundles (by results of Bridson and others).

In the paper under review the author finds some criteria that determine when two graph manifold groups have isomorphic profinite completion. In particular, the main result states that if two closed orientable graph manifolds have isomorphic completions of their fundamental groups then the graphs of their JSJ decompositions are isomorphic in very precise terms. For instance, given a closed oriented graph manifold M, there are only a finite number of closed oriented graph manifolds N with $\pi_1(N) \simeq \pi_1(M)$.

Reviewer: Daniele Ettore Otera (Vilnius)
Bridson, Martin R.; Reid, Alan W., Profinite rigidity, fibering, and the figure-eight knot, (2015), arXiv preprint
Bridson, Martin R.; Reid, Alan W.; Wilton, Henry, Profinite rigidity and surface bundles over the circle, (2016), arXiv preprint
Gildenhuys, Dion; Ribes, Luis, Profinite groups and Boolean graphs, J. Pure Appl. Algebra, 12, 1, 21-47, (1978) · Zbl 0428.20018
Hempel, John, Some 3-manifold groups with the same finite quotients, (2014), arXiv preprint
Hamilton, Emily; Wilton, Henry; Zalesskii, Pavel, Separability of double cosets and conjugacy classes in 3-manifold groups, J. Lond. Math. Soc., (2012) · Zbl 1275.57031
Herfort, W. N.; Addendum, Pavel A. Zalesskii, Virtually free pro-\textit{p} groups whose torsion elements have finite centralizer, (2012), arXiv preprint
Ribes, Luis, Profinite graphs and groups, A Series of Modern Surveys in Mathematics, vol. 66, (2017), Springer · Zbl 06738053
Ribes, Luis; Zalesskii, Pavel, Pro-\textit{p} trees and applications, (du Sautoy, Marcus; Segal, Dan; Shalev, Aner, New Horizons in Pro-\textit{p} Groups, Progress in Mathematics, vol. 184, (2000), Birkhäuser Boston), 75-119 · Zbl 0977.20019
Ribes, Luis; Zalesskii, Pavel, Profinite groups, (2000), Springer · Zbl 0949.20017
Wilton, Henry; Zalesskii, Pavel, Distinguishing geometries using finite quotients, (2014), arXiv preprint · Zbl 1361.57023
Zalesskii, P. A., Profinite groups that act on trees and do not have free nonabelian pro-p-subgroups, Math. USSR, Sb., 69, 1, 57-67, (1991) · Zbl 0716.20014
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.

Edited by FIZ Karlsruhe, the European Mathematical Society and the Heidelberg Academy of Sciences and Humanities
© 2021 FIZ Karlsruhe GmbH