Let \(\{\phi_0, \phi_1, \ldots\} \) and \(\{\psi_0, \psi_1, \ldots\} \) be sets of classical orthogonal polynomials such as Chebyshev, Legendre, ultraspherical, Jacobi, or Laguerre polynomials. Then the \((N+1) \times (N+1)\) upper-triangular conversion matrix \(A \) is defined by \((b_k)_{k=0}^N = A (a_j)_{j=0}^N \), where

\[
\sum_{j=0}^N a_j \phi_j(x) = \sum_{k=0}^N b_k \psi_k(x).
\]

In this interesting paper, the authors describe how to compute \(A (a_j)_{j=0}^N \) in \(O(N \log^2 N) \) arithmetic operations. For this purpose, the conversion matrix \(A \) is decomposed in the form

\[
A = D_1 (T \circ H) D_2,
\]

where \(D_1 \) and \(D_2 \) are diagonal matrices, \(T \) is an upper-triangular Toeplitz matrix, \(H \) is a positive semidefinite Hankel matrix, and \(\circ \) is the (entrywise) Hadamard product. Using a pivoted Cholesky algorithm, the Hankel matrix \(H \) is approximated by a low rank matrix. The Toeplitz matrix-vector products are computed by fast Fourier transform. This algorithm of basis conversion is conceptually simple and requires no precomputation. In this paper, the Legendre-to-Chebyshev basis conversion is mainly discussed. Later, other polynomial basis conversions are investigated. Numerical tests illustrate the high performance of this method.

Reviewer: Manfred Tasche (Rostock)

MSC:

- 65T50 Numerical methods for discrete and fast Fourier transforms
- 42C05 Orthogonal functions and polynomials, general theory of nontrigonometric harmonic analysis
- 15B05 Toeplitz, Cauchy, and related matrices

Keywords:

- polynomial basis conversion
- orthogonal polynomials
- conversion matrix
- fast polynomial transforms
- Toeplitz-dot-Hankel matrix
- fast Fourier transform
- Legendre polynomials
- Chebyshev polynomials

Software:

- Clenshaw-Curtis
- FFTW
- ApproxFun
- Julia
- Chebfun
- DLMF
- FastTransforms.jl
- GitHub

Full Text: DOI arXiv

References:

[27] Marsaglia, George; Styan, George P. H., Equalities and inequalities for ranks of matrices, Linear and Multilinear Algebra, 2, 269-292 (1974/75) · Zbl 0297.15003

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.