Summary: Many natural decision problems can be formulated as constraint satisfaction problems for reducts \(A \) of finitely bounded homogeneous structures. This class of problems is a large generalisation of the class of CSPs over finite domains. Our first result is a general polynomial-time reduction from such infinite-domain CSPs to finite-domain CSPs. We use this reduction to obtain new powerful polynomial-time tractability conditions that can be expressed in terms of the topological polymorphism clone of \(A \). Moreover, we study the subclass \(C \) of CSPs for structures \(A \) that are reducts of a structure with a unary language. Also this class \(C \) properly extends the class of all finite-domain CSPs. We apply our new tractability conditions to prove the general tractability conjecture of Bodirsky and Pinsker for reducts of finitely bounded homogeneous structures for the class \(C \).

MSC:
- 03B70 Logic in computer science
- 68-XX Computer science

Full Text: DOI arXiv

References:

[1] Bodirsky, Manuel; Mottet, Antoine
A dichotomy for first-order reducts of unary structures. (English) Zbl 06876266

Peter Jonsson and Johan Thapper. Constraint satisfaction and semilinear expansions of addition over the rationals and the reals. CoRR, abs/1506.00479, 2015. - Zbl 1338.68108

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.