Almost-regular dessins d’enfant on a torus and sphere. (English) Zbl 1396.57004

The paper under review gives a contribution to the realization problem, which consists in classifying which ramification data over the 2-dimensional sphere are realisable. The authors consider ramification data for which – when realisable – the covering space is either the torus or the sphere. A family $T = (T_i)_{i \in \mathbb{N}}$ of ramification data with r branch points is called almost regular of type $[k_1, \ldots, k_r]$ and error at most ϵ, if there exist a tuple A_j of positive integers different from k_j for each $j = 1, \ldots, r$, such that each T_i is of the form $[A_1, k_1^*], \ldots, [A_r, k_r^*]$ with degree tending to infinity, and such that the sum $\Sigma_{j=1}^{r} a \in A_j a \leq \epsilon$.

They then show the following theorem:

Theorem 1.1. Let T be a family of almost-regular genus 1 ramification data of type $[k_1, \ldots, k_r]$, error at most ϵ, where T_i is not one of the exceptional types $(A)-(D)$ (see below) for $i \in \mathbb{N}$. Then all but finitely many members of T are realizable if $\epsilon \leq 6$, or if $[k_1, \ldots, k_r] \in \{[2,2,2,2][3,3,3]\}$ and $\epsilon \leq 10$.

The exceptional types $(A)-(D)$ are:

$(A) [1,3,2^*][2^*][2^*]; (B) [2,4,3^*][3^*][3^*]; (C) [2^*][3,5,4^*][4^*]; (D) [2^*][3^*][5,7,6^*].$

Another result about ramification data of genus 1, in the same spirit, is proved, and for genus zero the authors show:

Theorem 1.4. With the exception of $[2^*][1,3^*][2,2,6^*]$, every family of almost-regular ramification data of genus 0 with $\epsilon \leq 6$ is realisable in infinitely many degrees. Moreover, for families of type $[2,2,2,2]$ or $[3,3,3]$, the same assertion holds with $\epsilon \leq 10$.

The authors use a mix of techniques with a focus on the study of a graph on a surface of genus g which comes from the ramification data, called a “dessin d’enfant”. In the introduction the authors provide useful and detailed information about the state of art of this problem.

Reviewer: Daciberg Lima Gonçalves (São Paulo)

MSC:

57M12 Low-dimensional topology of special (e.g., branched) coverings
57M10 Covering spaces and low-dimensional topology
30F10 Compact Riemann surfaces and uniformization
20B30 Symmetric groups

Keywords:

dessins d’enfants; surface; branched coverings; Riemann-Hurwitz formula; graph

Full Text: DOI

References:

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.