Kamienny, S.
On $J_1(p)$ and the kernel of the Eisenstein ideal. (English) Zbl 0705.14025

The covering map $\pi : X_1(p) \to X_0(p)$ between the modular curves corresponding to the congruence subgroups of level p defines a natural map on their Jacobian varieties $\pi_* : J_0(p) \to J_1(p)$. Let J be the quotient of $J_1(p)$ by the image of $J_0(p)$ and let T denote the Hecke algebra acting on J by Albanese functoriality. Let ϵ be an even character of conductor p, where p denotes a prime ≥ 13. The author proves that the group scheme $J_p[I_\epsilon]$ over $\text{Spec}(\mathbb{Z}[1/p])$ given by the kernel of the Eisenstein ideal I_ϵ acting on the p-divisible group J_p of J is admissible and not pure; moreover, the splitting field of this group scheme is an everywhere unramified p-extension of $\mathbb{Q}(\zeta_p)$ on which the Galois group $\text{Gal}(\mathbb{Q}(\zeta_p)/\mathbb{Q})$ acts via the character $\chi^{-1}\epsilon^{-1}$.

Let $C_p(\epsilon)$ be the ϵ-eigenspace under the action of the Galois group of the cover $X_1(p)/X_0(p)$ on the p-part of the projection to J of the cuspidal class group of $J_1(p)$. Since the ideal I_ϵ annihilates $C_p(\epsilon)$, the author can give as a corollary a more constructive proof of Ribet’s theorem on the converse to Herbrand’s criterion.

Reviewer: P.Bayer

MSC:
14G35 Modular and Shimura varieties
14L05 Formal groups, p-divisible groups
14H40 Jacobians, Prym varieties

Keywords:
Jacobians varieties of modular curves; p-divisible group; Eisenstein ideal

Full Text: DOI Crelle EuDML