Chapuy, Guillaume

On tessellations of random maps and the t_g-recurrence. (English) Zbl 1427.60021

Summary: We study the masses of the two cells in a Voronoï tessellation of the Brownian surface of genus $g \geq 0$ centered on two uniform random points. Making use of classical bijections and asymptotic estimates for maps of fixed genus, we relate the second moment of these random variables to the Painlevé-I equation satisfied by the double scaling limit of the one-matrix model, or equivalently to the "t_g-recurrence" satisfied by the constants t_g driving the asymptotic number of maps of genus $g \geq 0$. This raises the question of giving an independent probabilistic or combinatorial derivation of this second moment, which would then lead to new proof of the t_g-recurrence. More generally we conjecture that for any $g \geq 0$ and $k \geq 2$, the masses of the cells in a Voronoï tessellation of the genus-g Brownian surface by k uniform points follows a Dirichlet(1,1,\ldots,1) distribution.

MSC:

60D05 Geometric probability and stochastic geometry
05B45 Combinatorial aspects of tessellation and tiling problems

Keywords:
tessellations; random maps; Painlevé-I equation

Full Text: DOI arXiv

References:

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.