The main result is a positive answer to a conjecture of S. Friedland [Linear Multilinear Algebra 12, 81-98 (1982; Zbl 0491.15002)]. Let A, B be complex n-by-n matrices with eigenvalues λ_i, μ_i ($i = 1, \ldots, n$) and $\nu(A, B) = \min_{\pi} \max_i |\lambda_i - \mu_{\pi(i)}|$ where min runs over all permutations π of $\{1, \ldots, n\}$, then $\nu(A, B) \leq c_n \|A - B\|^{|1/n|} (\|A\| + \|B\|)^{1 - 1/n}$. Friedland conjectured that there is a global bound for c_n. Here it is shown that $c_n \leq 8$ for all n. It should be added that in the meantime Bhatia et al and Krause have shown by using similar tools that $c_n \leq 3.08$.

Reviewer: L. Elsner

MSC:
15A42 Inequalities involving eigenvalues and eigenvectors
15A18 Eigenvalues, singular values, and eigenvectors
65F15 Numerical computation of eigenvalues and eigenvectors of matrices

Keywords:
spectral variation; Chebyshev polynomials; resolvent

Full Text: DOI

References:

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.