Burness, Timothy C.; Harper, Scott
On the uniform domination number of a finite simple group. (English) Zbl 07076400

Summary: Let G be a finite simple group. By a theorem of Guralnick and Kantor, G contains a conjugacy class C such that for each nonidentity element $x \in G$, there exists $y \in C$ with $G = \langle x, y \rangle$. Building on this deep result, we introduce a new invariant $\gamma_u(G)$, which we call the uniform domination number of G. This is the minimal size of a subset S of conjugate elements such that for each $1 \neq x \in G$, there exists $s \in S$ with $G = \langle x, s \rangle$. (This invariant is closely related to the total domination number of the generating graph of G, which explains our choice of terminology.) By the result of Guralnick and Kantor, we have $\gamma_u(G) \leq |C|$ for some conjugacy class C of G, and the aim of this paper is to determine close to best possible bounds on $\gamma_u(G)$ for each family of simple groups. For example, we will prove that there are infinitely many nonabelian simple groups G with $\gamma_u(G) = 2$. To do this, we develop a probabilistic approach based on fixed point ratio estimates. We also establish a connection to the theory of bases for permutation groups, which allows us to apply recent results on base sizes for primitive actions of simple groups.

MSC:
20E32 Simple groups
20F05 Generators, relations, and presentations of groups
20E28 Maximal subgroups
20P05 Probabilistic methods in group theory

Software:
GAP Character Table Library; GAP; CTblLib; Magma

Full Text: DOI arXiv

References:

Edited by FIZ Karlsruhe, the European Mathematical Society and the Heidelberg Academy of Sciences and Humanities © 2022 FIZ Karlsruhe GmbH

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.