This paper addresses the problem of normal local stabilization for nonlinear control systems of the form
\[\dot{x} = f(x, u), \quad x \in \mathbb{R}^n, \quad u \in \mathbb{R}^m. \]

The above system is called normally locally stabilizable at a point \(P \in \mathbb{R}^n \) if, for each \(\tau > 0 \), there exists a neighborhood \(D \) of \(P \) such that any point \(x \in D \) can be steered by a piecewise constant control to an arbitrary neighborhood of \(P \) in time less than \(\tau \) and remains there. The author shows the following sufficient condition for solvability of this problem: there exist control values \(u_1, u_2, \ldots, u_{n+1} \) such that any \(x \in \mathbb{R}^n \) is represented as \(x = \sum_{i=1}^{n+1} \lambda_i f_i(0, u_i) \) with some nonnegative \(\lambda_i \). Then a solution to the normal local stabilization is proposed based on a construction of contracting cylinders.

Reviewer: Alexander Zuyev (Magdeburg)

MSC:
34H15 Stabilization of solutions to ordinary differential equations

Keywords:
dynamical system; positive basis; normal stabilization

Full Text: DOI MNR

References:

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.