Nikolaev, I. G.

Isotropic metric spaces. (English. Russian original) Zbl 0714.54031

A purely metric variant of the classical Schur theorem in Riemannian geometry is presented. In an arbitrary metric space it is possible to define the isotropic Riemannian curvature at a point P as a limit $K(P) = \lim_{T \to P} d(T)/s(T)$ (if it exists) where T is a triangle (shrinking to P in the limit), $d(T)$ denotes the excess and $s(T)$ “Euclidean area” of the triangle T. A metric space M is said to be isotropic if the isotropic Riemannian curvature exists at each point of M. The main result of the paper is the proof of the following theorem: Suppose that M is a locally compact metric space with intrinsic metric and with Menger-Urysohn dimension greater than two. Assume that the shortest path is locally extendible in M and M is an isotropic metric space. Then M is isometric to the space of constant curvature.

Furthermore, if M is a metric space with intrinsic metric, that is a topological manifold of finite dimension greater than two. Assume that the Wald curvature $K'_W(P)$ exists at each point $P \in M$. Then M is isometric to a space of constant curvature.

Reviewer: J.Bureš

MSC:

- 54E45 Compact (locally compact) metric spaces
- 53C20 Global Riemannian geometry, including pinching
- 53A10 Minimal surfaces in differential geometry, surfaces with prescribed mean curvature

Keywords:

isotropic Riemannian curvature; isotropic metric space; space of constant curvature