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Let C be a non-singular projective curve of genus g ≥ 2 over an algebraically closed field of characteristic
0. Take a point P on C. Its Weierstrass semigroup H(P ) is the set of non-negative integers n for which
there exists a rational function f on C such that f has a pole of order n at P , and is regular away from
P . The point P is a Galois Weierstrass point (GW point, in short), if Φ|aP | : C → P1 is a Galois covering
where a is the smallest positive integer of H(P ). Besides, P is said to be a weak Galois-Weierstrass point
(weak GW point), if it is a Weierstrass point and there exists a Galois morphism φ : C → P1 such that
P is a total ramification point of φ.
The paper under review is devoted to study the number of weak GW points which satisfy that their
Weierstrass semigroup H(P ) is generated by two positive integers, a and b, such that gcd(a, b) = 1 and
2 < a < b − 1. The main result of the article is Theorem 1.3. In its first part it is proved that the number
of GW points P with H(P ) = ⟨a, b⟩ is 0 or b + 1 if b ≡ −1 (mod a), and it is 0 or 1 if b ̸≡ −1 (mod a).
For second and third parts of Theorem 1.3, let P be a weak GW point, and call degGW(P ) the set of
degrees of the Galois coverings of C totally ramified at P . Then, the number of weak GW points P with
H(P ) = ⟨a, b⟩ and b ∈ degGW(P ) is 0 or 1, and there exists a weak GW point P with H(P ) = ⟨a, b⟩,
and a, b ∈ degGW(P ) if and only if C is birationally equivalent to the curve Xb = Y aZb−a + Zb.
It is important to note that M. Coppens has obtained in [Abh. Math. Semin. Univ. Hamb. 89, No. 1,
1–16 (2019; Zbl. 07100734)] results which overlap partially the mentioned Theorem 1.3.
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