Iwasawa L-functions for multiplicative abelian varieties. (English) [Zbl 0716.14008]
Jones, John W.

Iwasawa L-functions for abelian varieties with multiplicative reductions are studied, extending some results proved by B. Mazur in Invent. Math. 18, 183-266 (1972; Zbl 0245.14048)

Let \(p \neq 2 \) be a prime, \(\Gamma = \mathbb{Z}_p \) (as an additive topological group) with a generator \(\gamma \), and \(\Lambda := \lim_{\longrightarrow} \mathbb{Z}_p \Gamma/p^n \Gamma \). Then the map which sends \(T \) to \(\gamma^{-1} T \) induces an isomorphism from \(\mathbb{Z}_p \Gamma/\mu(T) \) to \(\Lambda \). The Iwasawa L-function for an elliptic curve was defined as the characteristic polynomial of the p-Selmer group of the curve. To generalize this definition to abelian varieties, one needs “good” \(\Lambda \)-modules which are finitely generated modules \(M \) over \(\Lambda \). Such a module is quasi-isomorphic to the direct sum \(N^j \oplus \mathbb{Z}/p^j \mathbb{Z}[[T]] \oplus (\otimes_j \mathbb{Z}_p[[T]](F_j)p^n) \) where \(p \) is the free rank of \(M, F_j \) is an irreducible distinguished polynomial for each \(j \). The invariants \((\rho, \mu, \{E_j\}) \) determine \(M \) completely up to quasi-isomorphism (i.e., up to finite kernel and cokernel). The \(\mu \)-invariant of \(M \) is \(\mu := \sum \mu_i \), the characteristic polynomial of \(M \) is \(F_M(T) := p^\mu \prod_j (F_j(T))^{\mu_j} \) and \(f_M(T) \) is the polynomial satisfying \(f_M(T+1) = F_M(T) \).

Let \(K \) be a number field with ring of integers \(\mathcal{O}_K \). Let \(A/K \) be an abelian variety defined over \(K \), \(\hat{A} \) its Néron model over \(\mathcal{O}_K \), \(\hat{A}_p \) the dual abelian variety of \(A \), \(A^0 \) the connected component of \(A \) and \(A_{\infty} := \cup_p A_p^0 \). Let \(\Phi \) be defined by the short exact sequence \(0 \rightarrow A^0 \rightarrow A \rightarrow \Phi \rightarrow 0 \). Let \(L/K \) be a \(\Gamma \)-extension of \(K \), \(T \) the set of all primes in \(K \) ramifying in \(L \), \(\log_p \rho \), a p-adic logarithm of \(L/K \), \(\rho : \text{Gal}(L/K) \rightarrow 1 + p\mathbb{Z}_p \subset \mathbb{Z}_p^* \) a fixed continuous character compatible with \(T \). Assume that \(A \) satisfies the following hypothesis:

1. \(Sh_p (K) \) is finite.
2. Every prime \(p \) of \(K \) for which \(A \) has bad reduction splits finitely in \(L \).
3. The reduction of \(A \) is semistable at every place of \(K \) dividing \(p \) and is an extension of an ordinary abelian variety by a torus for every \(\ell \in T \).
4. For every place \(t \in \Gamma \), the universal norm of \(A(L_t) \) is of finite index in \(A(K_t) \).

There is a p-adic height pairing \(<, >_p \) on \(A \) such that \(<, >_p := <, > \log_p \kappa(\gamma) \), where \(<, > \) is a p-adic height pairing defined by the author [p-adic heights for semistable abelian varieties\(^\text{\textlangle}\), Compos. Math. (to appear)] and is equivalent to Schneider’s analytic height [P. Schneider, Invent. Math. 69, 401-409 (1982; Zbl 0509.14048)]. A necessary and sufficient condition for \(<, >_p \) to be nondegenerate is obtained. Further, define the groups \(\mathcal{I} := \text{Image}[H^1(\mathcal{O}_K, A^0_{\infty}) \rightarrow H^1(\mathcal{O}_K - T, A^0_{\infty})] \) and \(\mathcal{I}_\infty := \text{Image}[H^1(\mathcal{O}_L, A^0_{\infty}) \rightarrow H^1(\mathcal{O}_L - T, A^0_{\infty})] \). (They are quasi-isomorphic to the classical p-Selmer group of \(A \) over \(K \) and \(L \), respectively.) Write \(A_p = (A_p^0 - A_p^0(K)) \oplus A_p^{\text{inf}}(L) \) where \(A_p^{\text{inf}} \) is the divisible subgroup of \(A_p \). Then one can define \(A_p^{\text{fin}}(K) \) to be the \(K \)-rational points of \(A_p^{\text{fin}}(L) \). Define the \(\mathcal{L} \)-invariant of \(A \) with respect to \(L/K \) at a place \(\nu \in T \) by \(\mathcal{L}(A) := (A(K_p)/NA(K_p))/\text{Image}(\Phi(\mathcal{O}_K) \log_p \kappa(\gamma))^{\nu} \) and define the global \(\mathcal{L} \)-invariant of \(A \) with respect to \(L/K \) by \(\mathcal{L}(A) := \prod_{\nu \in T} \mathcal{L}(A) \).

The main result of the paper is to define a “good” \(\Lambda \)-module, \(H \), which is subject to a quasi-exact sequence

\[
0 \rightarrow \mathcal{I}_\infty \rightarrow H \rightarrow (\mathbb{Q}_p/\mathbb{Z}_p)^\ell \rightarrow 0 \quad \text{or} \quad 0 \rightarrow (\mathbb{Q}_p/\mathbb{Z}_p)^\ell \rightarrow H \rightarrow \mathcal{I}_\infty \rightarrow 0
\]

where \(\Gamma \) acts trivially on the \((\mathbb{Q}_p/\mathbb{Z}_p)^\ell \) term. Let \(f_H(t) = (t-1)^{\gamma} f_T(t) \), and define a p-adic L-function \(L_H(s) := f_H(\kappa(\gamma)^{1-s}) \). (This is a candidate for the p-adic L-function of an ordinary abelian variety \(A \) which is semistable at \(p \).) Let \(\rho = or_{\nu \in T} A_L(s) \) and \(r = \text{rank}_Z A(K) \). Then the main result of this paper is formulated in the following theorem:

One has \(\rho \geq r + e \). If \(<, >_p \) is nondegenerate, then \(\rho = r + e \) and the \(\rho \)-th derivative of \(L_H(s) \) has the
A functional equation for \(L(H) \) and \(b \) have the same \(p \)-norm.

where \(m_\ell \) denotes the number of connected components in the fibre of \(A \) over \(\ell \) and \(a \approx b \) means that \(a \) and \(b \) have the same \(p \)-norm.

A functional equation for \(L_H(s) \) is also proved. That is, \(f_H(t) = (-1)^\rho t^\rho f_H(1/t) \) where \(\lambda \) is the \(\lambda \)-invariant of \(H \) and \(\rho \) is the multiplicity of the root of 1 in \(f_H(t) \), and similarly, \(L_H(s) = (-1)^\rho \kappa(\gamma)^{N(1-s)} L_H(2-s) \). Several candidates for such a \(\lambda \)-module are tested, e.g., \(H^1(\Omega_L, A_{p=}) \), \(H^1(\Omega_L, A_{p=}) \), and Greenberg’s module.

References:

4. S. Bosch and W. Lütkebohmert, \(\kappa \)-derivative of \(L \)-function \(. \) - Zbl 0574.14036
5. B. Mazur, Rational points of abelian varieties with values in towers of number fields \(. \) - Zbl 0547.14025
6. B. Mazur, Canonical height pairings via biextensions \(. \) - Zbl 0571.14021
7. B. Mazur, Rational points of abelian varieties with values in towers of number fields \(. \) - Zbl 0509.14048

Keywords:

functional equation for \(L \)-function; derivative of \(L \)-function; Birch and Swinnerton-Dyer conjecture; Iwasawa \(L \)-functions for abelian varieties with multiplicative reductions; \(p \)-adic height pairing

Full Text: DOI

MSC:

14G10 Zeta functions and related questions in algebraic geometry (e.g., Birch-Swinnerton-Dyer conjecture)
14K05 Algebraic theory of abelian varieties
14G40 Arithmetic varieties and schemes; Arakelov theory; heights
11G40 \(L \)-functions of varieties over global fields; Birch-Swinnerton-Dyer conjecture