Summary: Given a structure \mathcal{M} over ω and a syntactic complexity class \mathcal{C}, we say that a subset is \mathcal{C}-definable in \mathcal{M} if there exists a \mathcal{C}-formula $\Theta(x)$ in the language of \mathcal{M} such that for all $x \in \omega$, we have $x \in \mathcal{A}$ iff $\Theta(x)$ is true in the structure. S. S. Goncharov and N. T. Kogabaev [Vestnik NGU, Mat., Mekh., Inf., 8, No. 4, 23-32 (2008)] generalized an idea proposed by Friedberg [J. Symb. Log., 23, No. 3, 309-316 (1958)], introducing the notion of a \mathcal{C}-classification of \mathcal{M}: a computable list of \mathcal{C}-formulas such that every \mathcal{C}-definable subset is defined by a unique \mathcal{C}-formula in the list. We study the connections among \mathcal{C}_1^0-classifications in the context of two families of structures, unbounded computable equivalence structures, and unbounded computable injection structures. It is stated that every such injection structure has a Σ_1^0-classification, a Σ_1^0-classification, and a Σ_2^0-classification. In equivalence structures, on the other hand, we find a richer variety of possibilities.

MSC:

03C57 Computable structure theory, computable model theory
03D45 Theory of numerations, effectively presented structures
03C40 Interpolation, preservation, definability

Keywords:

Σ_1^0-classification; $d-\Sigma_1^0$-classification; Σ_2^0-classification; unbounded computable equivalence structure; unbounded computable injection structure

Full Text: DOI

References:

[7] Downey, R.; Melnikov, Ag; Ng, Km, On \((\{\text{varDelta}\}_2^0 \ \})\)-categoricity of equivalence relations, Ann. Pure Appl. Log., 166, 9, 851-880 (2015) · Zbl 1386.03050 · doi:10.1016/j.apal.2015.04.003

[12] Downey, Rg; Melnikov, Ag; Ng, Km, A Friedberg enumeration of equivalence relations, J. Math. Log., 17, 2, Article ID 1750008 (2017) · Zbl 1423.03153 · doi:10.1142/S0219061317500088

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically