Bergman, C.; Penza, T.; Romanowska, A. B.
Semilattice sums of algebras and Mal’tsev products of varieties. (English) [Zbl 07203511]

Summary: The Mal’tsev product of two varieties of similar algebras is always a quasivariety. We consider
the question of when this quasivariety is a variety. The main result asserts that if \(V \) is a strongly irregular
variety with no nullary operations and at least one non-unary operation, and \(S \) is the variety, of the
same type as \(V \), equivalent to the variety of semilattices, then the Mal’tsev product \(V \circ S \) is a variety.
It consists precisely of semilattice sums of algebras in \(V \). We derive an equational base for the product
from an equational base for \(V \). However, if \(V \) is a regular variety, then the Mal’tsev product may not be
a variety. We discuss various applications of the main result, and examine some detailed representations
of algebras in \(V \circ S \).

MSC:
08B05 Equational logic, Mal’tsev conditions
08C15 Quasivarieties
08A05 Structure theory of algebraic structures

Keywords:
Mal’tsev product of varieties; semilattice sums; prolongation; Plonka sums; Lallement sums; regular and
irregular identities; regularization and pseudo-regularization of a variety

Full Text: DOI

References:
2020
[3] Bergman, C.; Failing, D., Commutative idempotent groupoids and the constraint satisfaction problem, Algebra Universalis,
0902.08013 · doi:10.1007/BF01230924
0605.08004 · doi:10.1007/BF01199914
016-9388-x
016-9392-1
ematical Society, Providence
9947-1984-0719672-2
Publishing Co., Amsterdam

Edited by FIZ Karlsruhe, the European Mathematical Society and the Heidelberg Academy of Sciences and Humanities
© 2021 FIZ Karlsruhe GmbH

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.