For a smooth algebraic affine variety \(X^n \) the topology of generic polynomial mappings \(F : X \to \mathbb{C}^m \) with bounded degrees of its components (by \(d_1, \ldots, d_m \)) is studied. The space of all such mappings is denoted by \(\Omega_X(d_1, \ldots, d_m) \). Each element \(F \in \Omega_X(d_1, \ldots, d_m) \) generates the mapping \(j^q(F) \) (defined by \(x \mapsto (x, F(x), (\partial^q F(x))_{1 \leq |\alpha| \leq q}) \) in local coordinates) of \(X \) into the space of \(q \)-jets \(J^q(X, \mathbb{C}^m) \), and similarly the mapping \(j^{q_1, \ldots, q_r}(F) \) of \(X \) into the space of multi-jets \(J^{q_1, \ldots, q_r}(X, \mathbb{C}^m) \). One of general theorems (for arbitrary \(n \) and \(m \)) is that a generic element of \(\Omega_X(d_1, \ldots, d_m) \), treated as the above mapping, is transversal to any algebraic modular submanifold of the space of multi-jets \(J^{q_1, \ldots, q_r}(X, \mathbb{C}^m) \). An effective result is that a generic element of \(\Omega_X(d_1, \ldots, d_m) \) is transversal to any smooth (locally closed) algebraic subvariety if \(d_i \geq \sum_{j=1}^m q_j + r - 1, \ i = 1, \ldots, m \). More specific results are given in particular cases \(X = \mathbb{C}^2 \) or \(X = \{ x^2 + y^2 + z^2 = 1 \} \subset \mathbb{C}^3 \) and \(m = 2 \). The authors prove that a generic element \(\Omega_X(d_1, d_2) \) has only cusps, folds and double folds as singularities and compute the numbers of these singularities. Moreover, they describe the topology of the set of critical points \(C(F) \) of generic \(F \) and the topology of the discriminant \(\Delta(F) \) of \(F \).

Reviewer: Tadeusz Krasieński (Łódź)

MSC:

32A08 Polynomials and rational functions of several complex variables
32S99 Complex singularities

Keywords:

polynomial mapping; cusp singularity; fold singularity

Full Text: DOI

References:

[15] Mather, J.N.: On Thom-Boardman Singularities, Dynamical Systems Proceedings of a Symposium Held at the University of

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.