Mohsenipour, Shahram
Discrete orderings in the real spectrum. (English) Zbl 07238990

Summary: We study discrete orderings in the real spectrum of a commutative ring by defining discrete prime cones and give an algebro-geometric meaning to some kind of diophantine problems over discretely ordered rings. Also for a discretely ordered ring M and a real closed field R containing M we prove a theorem on the distribution of the discrete orderings of $M[X_1, \ldots, X_n]$ in $\text{Spec}_R(R[X_1, \ldots, X_n])$ in geometric terms. To be more precise, we prove that any ball $B(\alpha, r)$ in $\text{Spec}_R(R[X_1, \ldots, X_n])$ with center α and radius r (defined via Robson’s metric) contains a discrete ordering of $M[X_1, \ldots, X_n]$ whenever r is positive non-infinitesimal and α is at infinite distance from all hyperplanes over M.

MSC:
03H15 Nonstandard models of arithmetic
14P99 Real algebraic and real-analytic geometry

Keywords:
discretely ordered ring; real spectrum

Full Text: DOI

References:
[1] Bochnak, Jacek; Coste, Michel; Roy, Marie-Françoise, Real Algebraic Geometry, Ergebnisse der Mathematik und ihrer Grenzgebiete (3), vol. 36 (1998), Springer-Verlag: Springer-Verlag Berlin - Zbl 0912.14023

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.