

Fonda, A.; Gossez, J.-P.

Semicoercive variational problems at resonance: An abstract approach. (English) Zbl 0727.35056

Differ. Integral Equ. 3, No. 4, 695-708 (1990).

The authors consider the Dirichlet problem

(*)
$$-\Delta u - \lambda_1 u + g(x, u) = 0 \text{ in } \Omega, \quad u = 0 \text{ on } \partial\Omega,$$

where $\Omega \subset \mathbb{R}^N$ (N ≥ 1) is bounded and λ_1 is the first eigenvalue of (- Δ) on $H_0^1(\Omega)$. The Carathéodory function g: $\Omega \times \mathbb{R} \to \mathbb{R}$ satisfies

$$|g(x,u)| \le a|u|^{q-1} + b(x),$$

where $q < \infty$ if N=2, q < 2N/(N-2) if $N \ge 3$, and $b(x) \in L^{q'}(\Omega)$, 1/q + 1/q' = 1. In case N=1 it is assumed that for any r > 0, $\sup_{|u| < r} |g(x,u)| \in L^1(\Omega)$.

The associated functional to problem (*)

$$F(u) = 1/2 \int_{\Omega} [|\nabla u|^2 - \lambda_1 |u|^2] dx + \int_{\Omega} \int_{s=0}^{u} g(x, s) ds dx =: A(u) + B(u)$$

is a weakly lower semicontinuous C^1 functional on H_0^1 , whose critical points are the weak solutions of (*). If F(u) is coercive, i.e. $F(u) \to \infty$ as $||u|| \to \infty$ in H_0^1 , then F has a minimum and consequently (*) has a weak solution. The authors mainly study the coercivity of functionals F = A + B where A is semicoercive with respect to a subspace and B is coercive on a complementary subspace. Applications are given to the existence of solutions of problem (*).

Reviewer: M.Schneider (Karlsruhe)

MSC:

35J15

Nonlinear boundary value problems for linear elliptic equations
Existence theories for optimal control problems involving partial differ-

ential equations
Second-order elliptic equations

Keywords:

semilinear Dirichlet problem; coercivity; existence

Edited by FIZ Karlsruhe, the European Mathematical Society and the Heidelberg Academy of Sciences and Humanities © 2022 FIZ Karlsruhe GmbH