A practical example for the non-linear Bayesian filtering of model parameters. (English) Zbl 07287511

Summary: In this tutorial we consider the non-linear Bayesian filtering of static parameters in a time-dependent model. We outline the theoretical background and discuss appropriate solvers. We focus on particle-based filters and present Sequential Importance Sampling (SIS) and Sequential Monte Carlo (SMC). Throughout the paper we illustrate the concepts and techniques with a practical example using real-world data. The task is to estimate the gravitational acceleration of the Earth g by using observations collected from a simple pendulum. Importantly, the particle filters enable the adaptive updating of the estimate for g as new observations become available. For tutorial purposes we provide the data set and a Python implementation of the particle filters.

For the entire collection see [Zbl 07233453].

MSC:

62M20 Inference from stochastic processes and prediction
62L12 Sequential estimation
65C05 Monte Carlo methods
62P35 Applications of statistics to physics
86A20 Potentials, prospecting

Keywords:
nonlinear Bayesian filtering; model parameters; time-dependent model; particle-based filters; sequential importance sampling; sequential Monte Carlo

Software:
EnKF

Full Text: DOI

References:

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.