Wang, Limin; Zhang, Zhao; Wu, Chenchen; Xu, Dachuan; Zhang, Xiaoyan

Approximation algorithms for the dynamic k-level facility location problems. (English)

Summary: In this paper, we first consider a dynamic k-level facility location problem, which is a generalization of the k-level facility location problem when considering time factor. We present a combinatorial primal-dual approximation algorithm for this problem which finds a constant factor approximate solution. Then, we investigate the dynamic k-level facility location problem with submodular penalties and outliers, which extend the existing problem on two fronts, namely from static to dynamic and from without penalties (outliers) to penalties (outliers) allowed. Based on primal-dual technique and the triangle inequality property, we also give two constant factor approximation algorithms for the dynamic problem with submodular penalties and outliers, respectively.

MSC:

68Qxx Theory of computing

Keywords:

approximation algorithm; primal-dual; dynamic; facility location; submodular penalties; outliers

Full Text: DOI

References:

[16] Li, G.; Xu, D.; Du, D.; Wu, C., Approximation algorithms for the multilevel facility location problem with linear/submodular

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.