On dispersable book embeddings. (English) Zbl 07318693

Summary: In a dispersable book embedding, the vertices of a given graph G must be ordered along a line ℓ, called spine, and the edges of G must be drawn in different half-planes bounded by ℓ, called pages of the book, such that: (i) no two edges of the same page cross, and (ii) the graph induced by the edges of each page is 1-regular (or equivalently, a matching). The minimum number of pages needed by any dispersable book embedding of G is referred to as the dispersable book thickness $\text{dbt}(G)$ of G. Graph G is called dispersable if $\text{dbt}(G) = \Delta(G)$ holds (note that $\Delta(G) \leq \text{dbt}(G)$ always holds).

Back in 1979, Bernhart and Kainen conjectured that any Δ-regular bipartite graph G is dispersable, i.e., $\text{dbt}(G) = \Delta$. In this paper, we employ a counting argument to disprove this conjecture for any fixed value of $\Delta \geq 3$. Additionally, for the cases $\Delta = 3$ and $\Delta = 4$ we present concrete counterexamples to the conjecture. In particular, we show that the Gray graph, which is 3-regular and bipartite, has dispersable book thickness four (with a computer-aided proof), while the Folkman graph, which is 4-regular and bipartite, has dispersable book thickness five (with a purely combinatorial proof). On the positive side, we prove that 3-regular bipartite planar graphs are dispersable.

MSC:
68Qxx Theory of computing

Keywords:
linear layouts; book embeddings; regular graphs

Software:
YalSAT; Treengeling; Plingeling; Lingeling; CaDiCaL

Full Text: DOI arXiv

References:
[17] Malitz, S., Graphs with \(E\) edges have pagewidth \((O(\sqrt{E}))\), J. Algorithms, 17, 1, 71-84 (1994) - Zbl 0810.68102
[18] Malitz, S., Genus \(g\) graphs have pagewidth \((O(\sqrt{q}))\), J. Algorithms, 17, 1, 85-109 (1994) - Zbl 0810.68103
[20] Blankenship, R., Book embeddings of graphs (2005), Louisiana State University, Ph.D. thesis
[22] Gerbracht, E., Eleven unit distance embeddings of the Heawood graph (2009), CoRR
[27] Pach, J.; Pálvölgyi, D., Bounded-degree graphs can have arbitrarily large slope numbers, Electron. J. Comb., 13, 1 (2006) - Zbl 1080.05063
[38] Hoske, D., Book embedding with fixed page assignments (2012), Karlsruhe Institute for Technology, Bachelor thesis

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.