Let $w = w(x_1, \ldots, x_k)$ be a group word, that is a nontrivial element of the free group on x_1, \ldots, x_k, and G a group. Then, w can be viewed as a k-variable function defined on G. The set of w-values in G is denoted G_w and the subgroup generated by G_w is denoted $w(G)$. If G is a profinite group then $w(G)$ is taken to be the closed subgroup.

The concept of conciseness of a word w in a class of groups C, that is whether the finiteness of G_w implies the finiteness of $w(G)$ for all G in C, has a long history. More recently a variation of conciseness for profinite groups has been considered. A word w is strongly concise in a class C of profinite groups if $|G_w| < 2^{2\aleph_0}$ implies that $w(G)$ is finite for all G in C. In this article the authors consider a closely related question. They show that, for several families of words, if you suppose G is a profinite group with $|G_w| < 2^{2\aleph_0}$ and $w(G)$ generated by finitely many w-values, then $w(G)$ is finite.

In the first theorem the authors consider words of type $[y, n v^n]$ and $[v^n, n y]$ where v is the left normed commutator $[x_1, x_2, \ldots, x_k]$ and $[y, n x] = [y, x, \ldots, x]$ with x repeated n times and k, n and q all positive integers. The second theorem is more technical to state, but covers many families of words.

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.