Israfilov, D. M.
Approximation of the Riemann function by extremal polynomials. (Russian) Zbl 0732.30032
Special questions of function theory, 4, Baku, 101-122 (1989).

[For the entire collection see Zbl 0702.00015.]

Given a fixed point \(z_0 \) of a bounded simply connected domain \(G \), let \(\phi \) be the conformal mapping of \(G \) onto the disk \(|w| < r_0 \) with \(\phi(z_0) = 0, \phi'(z_0) = 1 \). For each \(p > 0 \) put \(\pi_{n,p}(z) := \int_{z_0}^{z} P_{n-1}(\zeta)d\zeta \), where \(P_{n-1} \) is a polynomial of degree \(\leq n - 1 \), minimizing the expression \(\int_G |[\phi'(\zeta)]^{2/p} - Q_{n-1}(\zeta)|^p d\sigma(\zeta) \) for all polynomials \(Q_{n-1} \) of degree \(\leq n - 1 \) with \(Q_{n-1}(z_0) = 1 \).

Main result: If \(G \) is a quasidisk then

\[
\sup_{z \in G} |\int_{z_0}^{z} [\phi'(\zeta)]^{2/p} d\zeta - \pi_{n,p}(z)| \leq c n^{-\gamma}, \quad n \geq 1, \quad p \geq 2,
\]

where \(\gamma = \gamma(G,p) \), \(c = c(G,p) \) are constants independent of \(n \). If \(p = 2 \) the result is due to V. I. Belyĭ [Mat. Sbornik, n. Ser. 102(144), 331-361 (1977; Zbl 0358.30005)].

Reviewer: J. Siciak (Kraków)

MSC:
30E10 Approximation in the complex plane
41A10 Approximation by polynomials

Keywords:
Bieberbach polynomials