Gąsiorek, Marcin
On algorithmic Coxeter spectral analysis of positive posets. (English) [Zbl 07323513]

Summary: Following a general framework of Coxeter spectral analysis of signed graphs \(\Delta \) and finite posets \(I \) introduced by D. Simson [SIAM J. Discrete Math. 27, No. 2, 827–854 (2013; Zbl 1272.05072)] we present efficient numerical algorithms for the Coxeter spectral study of finite posets \(I = \{\{1, \ldots, n\}, \preceq_I\} \) that are positive in the sense that the symmetric Gram matrix \(G_I := \frac{1}{2}(C_I + C_I^t) \in \mathbb{M}_n(\mathbb{Q}) \) is positive definite, where \(C_I \in \mathbb{M}_n(\mathbb{Z}) \) is the incidence matrix of \(I \) encoding the relation \(\preceq_I \). In the framework of scientific computing we present a complete Coxeter spectral classification of finite positive posets \(I \) of size \(n = |I| < 20 \). It extends one of the main results obtained in [the author et al., Eur. J. Comb. 48, 127–142 (2015; Zbl 1318.06004)] for posets of size \(n \leq 10 \). We also show that the connectivity of such posets \(I \) is determined by the complex Coxeter spectrum \(\text{specc}_I \subseteq \mathbb{C} \); equivalently, by the Coxeter polynomial \(\text{cox}_I(t) \in \mathbb{Z}[t] \od I \).

One of the main results of the paper is a new technique to compute in a polynomial time a \(\mathbb{Z} \)-invertible matrix \(B_I \in \mathbb{M}_n(\mathbb{Z}) \) such that \(B_I^t \cdot C_I \cdot B_I = \bar{G}_{D_I} \), where \(\bar{G}_{D_I} \in \mathbb{M}_n(\mathbb{Z}) \) is a non-symmetric Gram matrix of a simply-laced Dynkin diagram \(D_I \in \{D_n, E_6, E_7, E_8\} \) associated with a finite positive poset \(I \).

MSC:
00-XX General and overarching topics; collections

Keywords:
positive poset; edge-bipartite graph; spectral graph theory; Dynkin-type; Coxeter spectrum; numerical algorithm

Software:
Python; Maple

Full Text: DOI

References:
[5] Barot, M.; González, J. A.J.; de la Peña, J. A., Quadratic forms. combinatorics and numerical results, Algebra and Applica-
[9] Bondy, J. A.; Murty, U. S.R., Graph theory, Graduate Texts in Mathematics, volume 244 (2008), Springer: Springer Berlin · Zbl 1134.05001
[12] Diestel, R., Graph theory, Graduate Texts in Mathematics, volume 173 (2017), Springer: Springer Berlin · Zbl 1375.05002
1202.15030

Simson, D., Tame-wild dichotomy of Birkhoff type problems for nilpotent linear operators, J. Algebra, 424, 254-293 (2015) · Zbl 1312.16011

Simson, D., A Coxeter spectral classification of positive edge-bipartite graphs I. Dynkin types \(\mathcal{B}_n , \mathcal{C}_n , \mathcal{F}_4 , \mathcal{G}_2 , \mathbb{E}_6 , \mathbb{E}_7 , \mathbb{E}_8 \), Linear Algebra Appl., 557, 105-133 (2018) · Zbl 1396.05049

Simson, D., Symbolic computation of strong Gram congruences for Cox-regular positive edge-bipartite graphs with loops, Linear Algebra Appl., 573, 90-143 (2019) · Zbl 1411.05108

Zajač, K., Numeric algorithms for corank two edge-bipartite graphs and their mesh geometries of roots, Fundam. Inform., 152, 185-222 (2017) · Zbl 1375.05167

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.