Lopuhaä, Hendrik P.; Rousseeuw, Peter J.

Breakdown points of affine equivariant estimators of multivariate location and covariance matrices. (English) Zbl 0733.62058

The finite-sample replacement breakdown point of a location estimator $t_n \hat{X}$ at a collection X is defined as the smallest fraction of outliers that can take the estimate over all bounds:

$$e^*(t_n, X) = \min_{1 \leq m \leq n} \left\{ \frac{m}{n} : \sup_{1 \leq m \leq n} \| t_n \hat{X} - t_n \hat{Y}_m \| = \infty, \right\}$$

where Y_m is X with m replacements. In section 2 it is shown that $\lceil (n + 1)/2 \rceil / n$ (where $\lceil u \rceil$ denotes the nearest integer less than or equal to u) is an upper bound for the breakdown point of a translation equivariant location estimator, and that the same bound holds for the L_1-estimator. In section 3, the role of the indicated bound is considered for affine equivariant estimators of location and covariance, in particular for minimum volume ellipsoid and S-estimators. In section 4, the breakdown point is related to a measure of performance based on large deviation probabilities, and in section 5 it is shown that one-step reweighting preserves the breakdown point.

Reviewer: R. Mentz (S.M.de Tucuman)

MSC:

62H12 Estimation in multivariate analysis
62F35 Robustness and adaptive procedures (parametric inference)

Keywords:
tails of distributions; weighted mean; weighted covariance; finite-sample replacement breakdown point; location estimator; outliers; upper bound; translation equivariant location estimator; affine equivariant estimators; minimum volume ellipsoid; S-estimators; measure of performance; large deviation probabilities; one-step reweighting

Full Text: DOI