A Turing kernelization dichotomy for structural parameterizations of \(\mathcal{F} \)-minor-free deletion.

(English) Zbl 07332997

This paper is concerned with the notion of Turing kernelization, as applied to the \(\mathcal{F} \)-minor-free deletion (FMFD) problem. In the FMFD problem we are given a graph \(G \), an integer \(l \) (which is the parameter), and a fixed-finite family \(\mathcal{F} \) and asked if by deleting \(l \) or fewer vertices, we can make \(G \) \(\mathcal{F} \)-minor free.

The FMFD problem captures a number of optimization problems in graph theory. For instance, it is not hard to see that when \(\mathcal{F} = \{P_2\} \) the problem is the minimum vertex cover problem and when \(\mathcal{F} = \{P_3\} \) the problem is the minimum feedback vertex set problem.

Turing kernelization was introduced by D. Hermelin et al. [Algorithmica 71, No. 3, 702–730 (2015; Zbl 1312.68102)]. Turing kernelization generalizes the notion of Turing reductions. For instance, in a Turing reduction we can make use of multiple calls to an oracle, whereas in the traditional Karp reduction, only a single call can be made. In a Turing kernelization of size \(f \), for problem \(Q \), the algorithm can query an oracle to obtain an answer to any instance of problem \(Q \) of size \(|x| \) and parameter bounded by \(f(k) \) in a single step, and using the answer can adaptively solve any instance \((x, k)\) in time polynomial in \(|x| + k \).

The paper describes a neat dichotomy based on the structure of \(\mathcal{F} \). In particular, it is shown that the \(P_3 \)-minor-free deletion problem parameterized by the feedback vertex number is MK[2]-complete; this essentially rules out the existence of a polynomial kernel unless \(\text{NP} \subseteq \text{coNP/poly} \). On the other hand, when \(\mathcal{F} \) contains a graph with no connected component of more than 2 vertices, they provide a polynomial-time kernelization.

The paper contains several other results on this topic. It is extremely well-written and thorough with the casual reader in mind. All the terms used in the paper are clearly defined in the Preliminaries section. Moreover, reductions are illustrated with appropriate figures to clarify the exposition. Overall, this paper represents significant contributions which are presented appropriately.

Reviewer: K. Subramani (Morgantown)

MSC:
68Q27 Parameterized complexity, tractability and kernelization
68R10 Graph theory (including graph drawing) in computer science

Keywords:
parameterized complexity; kernelization; parameterized algorithms; hardness of kernelization; Turing kernelization

Full Text: DOI

References:
Zbl 1441.68188
Zbl 0436.68029
FIZ Karlsruhe
Zbl 1312.68102
Binkele-Raible, D.; Fernau, H.; Fomin, F. V.; Lokshtanov, D.; Saurabh, S.; Villanger, Y., Kernel(s) for problems with no
Zbl 1290.68045
Gao, J.; Hüffner, F.; Niedermeier, R., A structural view on parameterizing problems: distance from triviality, (Proc. 1st
IWPEC (2004)), 162-173 - Zbl 1104.68050
Jansen, B. M.P.; Bodlaender, H. L., Vertex cover kernelization revisited - upper and lower bounds for a refined parameter,
Jansen, B. M.P.; Pieterse, A., Polynomial kernels for hitting forbidden minors under structural parameterizations, Theor.
· Zbl 1295.05242
Niedermeier, R., Reflections on multivariate algorithmics and problem parameterization, (Proc. 27th STACS (2010)), 17-32 -
Zbl 1230.68096
Baste, J.; Sau, I.; Thilikos, D. M., Optimal algorithms for hitting (topological) minors on graphs of bounded treewidth, (Proc.
Fomin, F. V.; Lokshtanov, D.; Misra, N.; Philip, G.; Saurabh, S., Hitting forbidden minors: approximation and kernelization,
Giannopoulou, A. C.; Jansen, B. M.P.; Lokshtanov, D.; Saurabh, S., Uniform kernelization complexity of hitting forbidden
Bodlaender, H. L.; van Dijk, T. C., A cubic kernel for feedback vertex set and loop cutset, Theory Comput. Syst., 46, 566-597
(2010) - Zbl 1215.68170
Thomassé, S., A \((4 \cdot k^2)\) kernel for feedback vertex set, ACM Trans. Algorithms, 6 (2010)
0912.68148
1061.05088
Dell, H.; van Melkebeek, D., Satisfiability allows no nontrivial sparsification unless the polynomial-time hierarchy collapses,
(2011) - Zbl 1233.68144
Hermelin, D.; Kratsch, S.; Soltys, K.; Wahlström, M.; Wu, X., A completeness theory for polynomial (Turing) kernelization,
Algorithmica, 71, 702-730 (2015) - Zbl 1312.68102
Fernau, H., Kernelization, Turing kernels, (Encyclopedia of Algorithms (2016), Springer), 1043-1045
Binele-Raible, D.; Fernau, H.; Fomin, F. V.; Lokshtanov, D.; Saurabh, S.; Villanger, Y., Kernel(s) for problems with no
Lokshtanov, D., New methods in parameterized algorithms and complexity (2009), University of Bergen: University of Bergen
Norway, Ph.D. thesis
Jansen, B. M.P., Turing kernelization for finding long paths and cycles in restricted graph classes, J. Comput. Syst. Sci., 85,
18-37 (2017) - Zbl 1356.68099
Jansen, B. M.P.; Pilipczuk, M.; Wrochna, M., Turing kernelization for finding long paths in graph classes excluding a
topological minor, Algorithmica, 81, 3936-3967 (2019) - Zbl 1430.68219
Wellner, M., Aspects of preprocessing applied to combinatorial graph problems (2013), Technische Universität Berlin, Ph.D.
thesis
Bafna, V.; Berman, P.; Fujito, T., A 2-approximation algorithm for the undirected feedback vertex set problem, SIAM J.
219-230 (1980) - Zbl 0436.68029
· Zbl 0823.05038
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically
matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original
paper as accurately as possible without claiming the completeness or perfect precision of the matching.