Ash, Avner; Yasaki, Dan
Steinberg homology, modular forms, and real quadratic fields. (English) Zbl 07334491
J. Number Theory 224, 323-367 (2021)

Let R be a commutative ring, let E be a real quadratic field, and let $\Gamma \subset \text{GL}_2(\mathbb{Z})$ be a congruence subgroup. The authors study the homomorphism $\psi_{\Gamma,E} := -\partial$, where $\partial : H_1(\Gamma, C) \to H_0(\Gamma, \text{St}(Q^2; R))$ is the connecting homomorphism arising from the short exact sequence

$$0 \to \text{St}(Q^2; R) \to \text{St}(E^2; R) \to C \to 0,$$

where St denotes the Steinberg module. In the case $R = \mathbb{C}$, the authors prove that the image of $\psi_{\Gamma,E}$ can be described in terms of modular symbols. For general R, they prove that $\text{Im}(\psi_{\Gamma,E})$ always lies in a certain cuspidal subspace $H^c_0(\Gamma, \text{St}(Q^2; R))$. Using work of H. W. Lenstra jun. [Invent. Math. 42, 201–224 (1977; Zbl 0362.12012)], and assuming the Generalized Riemann Hypothesis (GRH), they prove that the cokernel of $\psi_{\Gamma,E}$ is a finitely-generated, torsion R-module (Theorem 9.3). For specific choices of Γ, the authors are able to prove stronger results (still assuming GRH). For example, in the case where $\Gamma = \Gamma_1(N)$ or $\Gamma_1(N)\pm$, it is shown that $\psi_{\Gamma,E}$ is surjective. The authors also indicate that unconditional versions of their results should follow from a suitably developed theory of so-called toral periods (at least in the case where $R = \mathbb{C}$), and they conclude by giving some numerical evidence.

Reviewer: Nils Matthes (Oxford)

MSC:
11F67 Special values of automorphic L-series, periods of automorphic forms, cohomology, modular symbols
11F75 Cohomology of arithmetic groups

Keywords:
arithmetic homology; Steinberg representation; real quadratic field; general linear group; arithmetic group; modular form

Software:
PFPK; ecdata; SageMath; Magma

Full Text: DOI arXiv

References:
[2] Ash, Avner; Putman, Andrew; Sam, Steven V., Homological vanishing for the Steinberg representation, Compos. Math., 154, 6, 1111-1130 (2018), MR 3797603 · Zbl 1458.20042
[7] Church, Thomas; Farb, Benson; Putman, Andrew, Integrality in the Steinberg module and the top-dimensional cohomology of $\langle \text{operatorname{SL}}_n \text{mathcal{O}}_k \rangle$, Am. J. Math., 141, 5, 1375-1419 (2019), MR 4011804 · Zbl 1453.20043

[17] The Sage Developers, Sagemath, the sage mathematics software system (version 8.0) (2017)

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.