Swartz, Eric; Werner, Nicholas J.
Covering numbers of commutative rings. (English) Zbl 07341175
J. Pure Appl. Algebra 225, No. 8, Article ID 106622, 17 p. (2021)

Summary: A cover of a unital, associative (not necessarily commutative) ring R is a collection of proper subrings of R whose set-theoretic union equals R. If such a cover exists, then the covering number $\sigma(R)$ of R is the cardinality of a minimal cover, and a ring R is called σ-elementary if $\sigma(R) < \sigma(R/I)$ for every nonzero two-sided ideal I of R. In this paper, we show that if R has a finite covering number, then the calculation of $\sigma(R)$ can be reduced to the case where R is a finite ring of characteristic p and the Jacobson radical J of R has nilpotency 2. Our main result is that if R has a finite covering number and R/J is commutative (even if R itself is not), then either $\sigma(R) = \sigma(R/J)$, or $\sigma(R) = p^d + 1$ for some $d \geq 1$. As a byproduct, we classify all commutative σ-elementary rings with a finite covering number and characterize the integers that occur as the covering number of a commutative ring.

MSC:
16P10 Finite rings and finite-dimensional associative algebras
13M99 Finite commutative rings
05E16 Combinatorial aspects of groups and algebras

Keywords:
subring cover; covering

Full Text: DOI

References:
[9] Kępczyk, M., A ring which is a sum of two PI rings is always a PI ring, Isr. J. Math., 221, 1, 481-487 (2017) · Zbl 1396.16015
[15] Lucchini, A.; Maróti, A., Rings as the union of proper subrings (2010), Preprint, Available at

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.