Přenosil, Adam
De Morgan clones and four-valued logics. (English) Zbl 07345062
Algebra Univers. 82, No. 2, Paper No. 30, 42 p. (2021)

A De Morgan clone is a clone over the four-element set $DM_4 := \{t, f, n, b\}$. This is the set of truth values of Benap-Dunn’s four-valued logic [N. D. Belnap jun., in: Mod. Uses of multiple-valued Logic, 5th int. Symp., Bloomington 1975, 5–37 (1977; Zbl 0424.03012)], known also as the logic of first order entailment [J. M. Dunn, Philos. Stud. 29, No. 3, 149–168 (1976; Zbl 1435.03043)]. The De Morgan algebra is the algebra $DM_4 := (DM_4, \lor, \land, t, f, \neg)$ where \lor and \land are the lattice operations w.r.t. the so called truth order given by $f \leq b \leq t, f \leq n \leq t$ and the operation \neg is defined by $\neg t = f, \neg f = t, \neg n = n, \neg b = b$. DMA is the clone of all term functions of DM_4.

In the paper, generating sets are found for the clones of all functions that preserve the subalgebras of DM_4, the automorphisms of DM_4, the truth ordering of DM_4, the information ordering of DM_4 and also for some combinations of these. Described are also clones that fail to preserve some of this structure. It is shown that DMA has exactly three covers in the lattice of all four-valued clones, and described is the lattice of all De Morgan clones above DMA which contain a discriminator function. Each of the latter clones determine an expansion of the Belnap-Dunn logic by additional connectives, and the author provides a classification of these clones by the metalogical properties of corresponding logics, namely, by their position in the Leibniz and Frege hierarchies.

Reviewer: Jānis Cirulis (Riga)

MSC:
- 03G27 Abstract algebraic logic
- 03C05 Equational classes, universal algebra in model theory
- 03G10 Logical aspects of lattices and related structures

Keywords: abstract algebraic logic; Belnap-Dunn logic; clone theory; four-valued logic

Full Text: DOI

References:
[12] Cintula, P.; Noguera, C., The proof by cases property and its variants in structural consequence relations, Stud. Logic., 101,