Summary: Critical nets in \mathbb{R}^k (sometimes called geodesic nets) are embedded graphs with the property that their embedding is a critical point of the total (edge) length functional and under the constraint that certain 1-valent vertices have a fixed position. In contrast to what happens on generic manifolds, we show that, if the embedding is bounded and n is the number of 1-valent vertices, the total length of the edges not incident with a 1-valent vertex is bounded by rn (where r is the outer radius), the degree of any vertex is bounded by n and that the number of edges (and hence the number of vertices) is bounded by $n\ell$ (where ℓ is related to the combinatorial diameter of the graph).

MSC:
53C22 Geodesics in global differential geometry
58E10 Variational problems in applications to the theory of geodesics (problems in one independent variable)
05C21 Flows in graphs
05C81 Random walks on graphs

Keywords:
geodesic nets; minimal immersions; Laplacian; isoperimetric inequalities

Full Text: DOI

References:

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.