Summary: We describe a methodology that can be used to construct new distances which produce many famous means. Its main application is to construct a distance for the logarithmic mean, settling an old open problem. We also use it to construct alternative distances for already known means, such as the arithmetic and all quasi-arithmetic means. Moreover, we show how to construct distances for almost all means that can be obtained from Cauchy’s Mean Value Theorem, and apply this to construct distances for all Stolarsky means. Finally, we show how to construct a distance for a mean $M_q(a, b) = q^{-1}(M(q(a), q(b)))$, where M is another mean for which a distance is already known, and q is a monotone bijection to a subinterval.

MSC:
26E60 Means
26A24 Differentiation (real functions of one variable): general theory, generalized derivatives, mean value theorems
51K05 General theory of distance geometry

Keywords: distances; logarithmic mean; means; mean value theorem; quasi-arithmetic means; Stolarsky means

Full Text: DOI

References:

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.