Leiderman, Arkady; Tkachenko, Mikhail

Some properties of one-point extensions. (English) [Zbl 07354654]
Topol. Proc. 59, 195-208 (2022)

All topological spaces in this article are assumed to be Tychonoff. The set-theoretic framework is ZFC. A one-point extension of a Tychonoff space \(X \) is a Tychonoff space \(X_p \) such that there exists a homeomorphic embedding \(\pi: X \to X_p \) such that \(\pi(X) \) is dense in \(X_p \), and \(X_p \setminus \pi(X) \) is a singleton; usually, the unique point of \(X_p \setminus \pi(X) \) is denoted by \(p \), and \(X \) is identified with \(\pi(X) \); thus, \(X_p = X \cup \{p\} \) and \(X \) is a dense subspace of the Tychonoff space \(X_p \). Given a point \(p \in \beta X \setminus X_p \), the subspace \(X_p \) denotes the subspace \(\beta X \setminus X_p \) of \(\beta X \). The authors obtain the following results. A Tychonoff space \(X \) is realcompact if and only if, for every \(p \in \beta X \setminus X \), the set \(\{p\} \) is of type \(G_\delta \) in \(X_p \). A Tychonoff space \(X \) is Lindelöf (respectively, not pseudocompact) if and only if, for every \(p \in \beta X \setminus X \), the set \(\{p\} \) is of type \(G_\delta \) in \(X_p \). If a Tychonoff space \(X \) is not pseudocompact, then there exists a point \(p \in \beta X \setminus X \) such that \(X_p \) is not Fréchet-Urysohn at \(p \) (that is, there exists a set \(A \subseteq X \) such that \(p \) is an accumulation point of \(A \) but no sequence of points of \(X \) converges to \(p \) in \(X_p \)). If \(X \) is a Tychonoff space, and \(p \in \beta X \setminus X \), then \(p \) does not have a countable base of neighborhoods in \(X_p \).

A subset \(B \) of a Tychonoff space \(X \) is called \(\textit{bounded} \) if, for every continuous function \(f: X \to \mathbb{R} \), the set \(f(B) \) is bounded in \(\mathbb{R} \). The authors prove that if \(X \) is a Tychonoff space such that no infinite closed discrete subspace of \(X \) is bounded in \(X \), then, for an arbitrary \(p \in \beta X \setminus X \), the space \(X_p \) is not Fréchet-Urysohn at \(p \) because no sequence of points of \(X \) converges to \(p \) in \(\beta X \). Next, the authors consider a locally compact non-compact Hausdorff space \(Y \) such that \(\beta Y \) is a Tychonoff compactum, and \(\beta Y \setminus Y \) is a singleton. Since every one-point extension \(Y_p \) of \(Y \) can be identified with \(\beta Y \), it holds that \(Y_p \) is Fréchet-Urysohn at \(p \). The authors inform that a description of such a space \(Y \) can be found in Chapter IV. 5 in [A. V. Arhangel’skiı, Topological function spaces. Dordrecht etc.: Kluwer Academic Publishers (1992; Zbl 0758.46026)].

The authors show that there exists an Isbell-Mrówka \(\Psi \)-space \(X \) such that every one-point extension \(X_p \) of \(X \) is of countable tightness at \(p \). The authors also ask if there exists an Isbell-Mrówka \(\Psi \)-space \(X \) such that, for some point \(p \in \beta X \setminus X \), the space \(X_p \) is of uncountable tightness at \(p \).

A space \(X \) is called \(\omega \)-\(\textit{bounded} \) if every closed separable subspace of \(X \) is compact. The authors notice that if a Tychonoff space \(X \) contains a dense \(\omega \)-bounded subspace, then every one-point extension \(X_p \) of \(X \) is of uncountable tightness at \(p \). The authors show that there exists a subspace \(X' \) of the Cantor cube \(2^{2^\omega} \) such that \(X' \) does not contain any dense \(\omega \)-bounded subspace but every one-point extension \(X_p \) of \(X \) is of uncountable tightness at \(p \). Other results on one-point extensions are also included in the article and several open problems are posed, some of them concern Q-set spaces. Let us recall that a Q-set space is an uncountable topological space \(X \) which is not \(\sigma \)-discrete but every subset of \(X \) is a \(G_\delta \)-set. Among the questions on Q-set spaces, being one of the motivations to conduct this research, there are the following: Under what conditions on a Tychonoff Q-set space \(X \) is a one-point extension \(X_p \) of \(X \) a Q-set space? Is the paracompact Q-set space constructed in [Z. T. Balogh, Proc. Am. Math. Soc. 126, No. 6, 1827–1833 (1998; Zbl 0897.54017)] Lindelöf?

Reviewer: Eliza Wajch (Siedlce)

MSC:

- 54D35 Extensions of spaces (compactifications, supercompactifications, completions, etc.)
- 54B40 Remainders in general topology
- 54D20 Noncompact covering properties (paracompact, Lindelöf, etc.)

Keywords:

- one-point extension; Čech-Stone compactification; Lindelöf space; character; Fréchet-Urysohn property; \(G_\delta \)-set; pseudocompactness; Q-set space

Full Text: Link