An increasing homeomorphism $h : \mathbb{R} \to \mathbb{R}$ is quasisymmetric, $h \in QS(\mathbb{R})$, if $M^{-1} \leq (h(x + t) - h(x))/(h(x) - h(x - t)) \leq M$ for all $x \in \mathbb{R}$ and $t > 0$ and $h \in QS(\mathbb{R})$ belongs to the symmetric class $S(\mathbb{R})$ if $\lim_{t \to 0}(h(x + t) - h(x))/(h(x) - h(x - t)) = 1$ uniformly for all $x \in \mathbb{R}$.

Quasisymmetric and symmetric quasisymmetric mappings play a central role in the theory of plane quasiconformal mappings and Teichmüller theory. The main result of the paper states that there is $h \in S(\mathbb{R})$ but h^{-1} is not symmetric. Earlier it has been known that $S(\mathbb{R})$ is not a topological group, see [M. A. Brakalova, Anal. Math. Phys. 8, No. 4, 541-549 (2018; Zbl 1414.30047)] and [H. Yun et al., Proc. Am. Math. Soc. 146, No. 10, 4255-4263 (2018; Zbl 1404.30031)]. The construction is explicit and rather complicated and, among other properties of quasisymmetric mappings, it is shown that $S(\mathbb{R})$ is not closed under composition. The authors also consider the class of strongly quasisymmetric homeomorphism h in \mathbb{R} which satisfy $|h(E)/h(I)| \leq c_1(|E|/|I|)^{c_2}$ whenever I is an interval and $E \subset I$ is a measurable set, see [S. W. Semmes, Trans. Am. Math. Soc. 306, No. 1, 233-263 (1988; Zbl 0653.30008)], and show that this class is not preserved under taking the inverse and composition.

Reviewer: Olli Martio (Helsinki)

MSC:
30C62 Quasiconformal mappings in the complex plane
30F60 Teichmüller theory for Riemann surfaces

Keywords:
quasisymmetric mappings; asymptotically conformal; strongly symmetric

Full Text: DOI

References:

Edited by FIZ Karlsruhe, the European Mathematical Society and the Heidelberg Academy of Sciences and Humanities © 2021 FIZ Karlsruhe GmbH
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.