Aboulker, Pierre; Charbit, Pierre; Naserasr, Reza

Extension of Gyárfás-Sumner conjecture to digraphs. (English) Zbl 07356170

The dichromatic number of a digraph is the minimum number of colors needed to color its vertices in such a way that each color class induces an acyclic digraph [V. Neumann-Lara, J. Comb. Theory, Ser. B 33, 265–270 (1982; Zbl 0506.05031)]. On the other hand, Gyárfás and Sumner conjectured that: Given two graphs F_1 and F_2 the class of graphs with no induced F_1 or F_2 has bounded chromatic number if and only if one of F_1; F_2 is a complete graph and the other is a forest (see [A. Gyárfás, Zastosow. Mat. 19, No. 3–4, 413–441 (1987; Zbl 0718.05041)] and [D. P. Sumner, in: The theory and applications of graphs, 4th int. Conf., Kalamazoo/ Mich. 1980. 557–576 (1981; Zbl 0476.05037)]).

In this paper the authors look for possible extensions of the Gyárfás-Sumner conjecture. In particular, they conjecture a simple characterization of sets F of three digraphs such that every digraph with sufficiently large dichromatic number must contain a member of F as an induced subdigraph. Regarding this, the authors prove that oriented K_4-free graphs without a directed path of length 3 have bounded dichromatic number, where a bound of 414 is provided. They also show that an orientation of a complete multipartite graph with no directed triangle is 2-colorable. To prove these results the authors introduce the notion of “nice sets” that might be of independent interest.

Reviewer: Juan José Montellano Ballesteros (Ciudad de México)

MSC:
05C15 Coloring of graphs and hypergraphs
05C20 Directed graphs (digraphs), tournaments

Keywords:
digraphs; dichromatic number; Gyárfás-Sumner conjecture

Full Text: DOI

References:

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.