Alzamel, A.; Wolfe, J. M.
Best multipoint local L_p approximation. (English) [Zbl 0736.41030]

Let $I = [a, b]$ be an interval and k, n positive integers with $k \leq n + 1$. Then $n + 1 = \ell \cdot k + r$ with integers ℓ, r such that $0 \leq r < k$. Let M be an $n + 1$-dimensional extended Tchebycheff subspace of $C(I)$ and x_i points with $a \leq x_1 < \cdots < x_k \leq b$. Let $f \in C(I)$ be fixed. Then for each fixed $1 \leq p \leq \infty$ and sufficiently small h there is at least one $q_h \in M$ which is the best approximation to f in $L^p(I_h)$, where I_h is the union of intervals $[x_j, x_j + h]$. An element $q^* \in M$ is called a best k-point approximation to f if there is a sequence $h_\nu \to 0$ such that the pertaining $q_{h_\nu} \to q^*$. The authors consider the problem of existence, uniqueness and characterization for such multipoint approximations. The main result is the following theorem: If $1 < p \leq \infty$ and $f \in C^{\ell+1}$ then $q_h \to q_0$ uniformly as $h \to 0$. The function $q_0 \in M$ is uniquely defined. It satisfies (*) $q_0^{(i)}(x_j) = f^{(i)}(x_j)$ for $j = 1, \ldots, k$ and $i = 0, \ldots, \ell - 1$. Further, q_0 minimizes the sum over $\|f^{(i)}(x_j) - q_0^{(i)}(x_j)\|^p$ over all $q \in M$ satisfying the interpolation conditions (*).

For $p = 1$ a similar result is obtained. But in this case there is in general no uniqueness and the q_0 is only a cluster point of the q_h.

Reviewer: R. Wegmann (München)

MSC:
41A50 Best approximation, Chebyshev systems
41A65 Abstract approximation theory (approximation in normed linear spaces and other abstract spaces)

Keywords:
best local k-point approximation

Full Text: DOI

References:

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.