
Summary: A topological index, also known as connectivity index, is a molecular structure descriptor calculated from a molecular graph of a chemical compound which characterizes its topology. Various topological indices are categorized based on their degree, distance, and spectrum. In this study, we calculated and analyzed the degree-based topological indices such as first general Zagreb index \(M_r(G) \), geometric arithmetic index \(GA(G) \), harmonic index \(H(G) \), general version of harmonic index \(H_r(G) \), sum connectivity index \(\lambda(G) \), general sum connectivity index \(\lambda_r(G) \), forgotten topological index \(F(G) \), and many more for the Robertson apex graph. Additionally, we calculated the newly developed topological indices such as the \(AG_2(G) \) and Sanskruti index for the Robertson apex graph \(G \).

MSC:

05-XX Combinatorics
81-XX Quantum theory

Full Text: DOI

References:

[10] Rada, J.; Cruz, R., Vertex-degree-based topological indices over graphs, MATCH Communications in Mathematical and in Computer Chemistry, 72, 3, 603-616 (2014) · Zbl 06704629

Kulli, V. R., Multiplicative connectivity indices of TUC4C8 [m, n] and TUC4 [m, n] nanotubes, Journal of Computer and Mathematical Sciences, 7, 11, 599-605 (2016)

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.