A field K is immediately algebraically closed (IAC) if, for every nontrivial valuation v on K, the residue field K^v is algebraically closed and the value group vK is divisible. The field K is valuationally algebraically closed (VAC) if, for every nontrivial valuation v on $\bar{\bar{K}}$, its algebraic closure, \bar{K} is dense in $\bar{\bar{K}}$ with respect to v. Examples of VAC fields include, separably closed fields (proposition 4.9), pseudo-algebraically closed fields and super-rosy fields of positive characteristic. Conversely, it follows from Krasner’s Lemma that a VAC field supporting a non-trivial henselian valuation is separably closed (Proposition 2.10).

It is clear from the definition that a VAC field is also IAC, but the reverse implication is not true, as shown by a couple of examples in Section 3 of the paper. In Section 5 it is shown, however, that when considering IAC as a property of the theory of K, rather than of a single field K, it does imply VAC.

In a different direction it is shown (Section 4) that IAC implies VAC if K is Artin-Schreier closed (in positive characteristic) or has a divisible multiplicative group (in the characteristic 0). These results are based on the fact (Proposition 4.3) that if K is IAC then to show that it is VAC it suffices to check that for any rank 1-valuation v on \bar{K} the completion of (K, v) is algebraically closed.

Reviewer: Assaf Hasson (Be’er Sheva)

MSC: 03C98 Applications of model theory

Keywords: model theory of fields; classification of valued fields

Full Text: DOI

References:

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.