Let $G_n = a_1 \alpha_1^n + \ldots + a_t \alpha_t^n$ be the n-th term of a non-degenerate linear recurrence sequence in the power sum representation. In the number field case, if $\max_{1 \leq j \leq t} |\alpha_j| \geq 1$, then

$$|G_n| \geq (\max_{1 \leq j \leq t} |\alpha_j|)^{n(1-\varepsilon)}$$

is well-known, for sufficiently large n.

In the present paper the authors prove a function field analogue of this theorem, in case of function fields in one variable of characteristic zero. The main result is the following:

Let $(G_n)_{n=0}^\infty$ be a nondegenerate linear recurrence sequence taking values in the function field K with power sum representation $G_n = a_1 \alpha_1^n + \ldots + a_t \alpha_t^n$. Let $L = K(\alpha_1, \ldots, \alpha_t)$ be the splitting field of the characteristic polynomial of that sequence and let μ be a valuation on L. Then there is an effectively computable constant C, independent of n, such that, for every sufficiently large n, the inequality

$$\mu(G_n) \leq C + n \cdot \min_{1 \leq j \leq t} \mu(\alpha_j)$$

holds.

Reviewer: István Gaál (Debrecen)

MSC:

11B37 Recurrences
11J87 Schmidt Subspace Theorem and applications
11R58 Arithmetic theory of algebraic function fields

Keywords:

function fields; linear recurrences; S-units

Full Text: DOI

References:

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.