Chung, Nguyen Thanh
On a class of critical p-biharmonic Kirchhoff type problems with indefinite weights. (English)
Bull. Iran. Math. Soc. 47, No. 4, 1207-1225 (2021)

Summary: Using the genus theory introduced by Krasnoselskii and a variant of the mountain pass theorem due to Rabinowitz [24], we study the existence of solutions for the following Kirchhoff-type problem:

$$\int_{\Omega} |\Delta u|^p \, dx \Delta \left(\int_{\Omega} |\Delta u|^{p-2} \Delta u \right) = \lambda |u|^{p^*-2} u + a(x)|u|^{p-2} u + f(x, u), \quad x \in \Omega,$$

where Ω is a bounded domain in \mathbb{R}^N ($N \geq 3$) with C^2 boundary, $1 < p < \frac{N}{2}$, $p^* = \frac{Np}{N-2p}$ is the critical exponent, Δ is the Laplace operator and $\frac{\partial}{\partial \nu}$ is the outer normal derivative, λ is a positive parameter, $M : [0, +\infty) \to \mathbb{R}$ and $f : \Omega \times \mathbb{R} \to \mathbb{R}$ are continuous functions, and $a \in L^{2\infty}(\Omega)$ is a weight function.

MSC:

- 47A75 Eigenvalue problems for linear operators
- 35B38 Critical points of functionals in context of PDEs (e.g., energy functionals)
- 35P30 Nonlinear eigenvalue problems and nonlinear spectral theory for PDEs

Keywords:

- Kirchhoff-type problems; p-biharmonic operators; critical exponents; indefinite weight; variational methods

Full Text: DOI

[21] Lions, PL, The concentration compactness principle in the calculus of variations, the limit case (II), Rev. Mat. Iberoamericana, 1, 2, 45-121 (1985) · Zbl 0704.49006 · doi:10.4171/RMI/12

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.